A Spiking Network Model of Decision Making Employing Rewarded STDP

نویسندگان

  • Steven Skorheim
  • Peter Lonjers
  • Maxim Bazhenov
چکیده

Reward-modulated spike timing dependent plasticity (STDP) combines unsupervised STDP with a reinforcement signal that modulates synaptic changes. It was proposed as a learning rule capable of solving the distal reward problem in reinforcement learning. Nonetheless, performance and limitations of this learning mechanism have yet to be tested for its ability to solve biological problems. In our work, rewarded STDP was implemented to model foraging behavior in a simulated environment. Over the course of training the network of spiking neurons developed the capability of producing highly successful decision-making. The network performance remained stable even after significant perturbations of synaptic structure. Rewarded STDP alone was insufficient to learn effective decision making due to the difficulty maintaining homeostatic equilibrium of synaptic weights and the development of local performance maxima. Our study predicts that successful learning requires stabilizing mechanisms that allow neurons to balance their input and output synapses as well as synaptic noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task

Neural networks with a single plastic layer employing reward modulated spike time dependent plasticity (STDP) are capable of learning simple foraging tasks. Here we demonstrate advanced pattern discrimination and continuous learning in a network of spiking neurons with multiple plastic layers. The network utilized both reward modulated and non-reward modulated STDP and implemented multiple mech...

متن کامل

Learning and executing goal-directed choices by internally generated sequences in spiking neural circuits

Recent neural ensemble recordings have established a link between goal-directed spatial decision making and internally generated neural sequences in the hippocampus of rats. To elucidate the synaptic mechanisms of these sequences underlying spatial decision making processes, we develop and investigate a spiking neural circuit model endowed with a combination of two synaptic plasticity mechanism...

متن کامل

Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule

Understanding how the human brain is able to efficiently perceive and understand a visual scene is still a field of ongoing research. Although many studies have focused on the design and optimization of neural networks to solve visual recognition tasks, most of them either lack neurobiologically plausible learning rules or decision-making processes. Here we present a large-scale model of a hier...

متن کامل

A CMOS Spiking Neural Network Circuit with Symmetric/Asymmetric STDP Function

SUMMARY In this paper, we propose an analog CMOS circuit which achieves spiking neural networks with spike-timing dependent synaptic plasticity (STDP). In particular, we propose a STDP circuit with symmetric function for the first time, and also we demonstrate associative memory operation in a Hopfield-type feedback network with STDP learning. In our spiking neuron model, analog information exp...

متن کامل

First-spike based visual categorization using reward-modulated STDP

Reinforcement learning (RL) has recently regained popularity, with major achievements such as beating the European game of Go champion. Here, for the first time, we show that RL can be used efficiently to train a spiking neural network (SNN) to perform object recognition in natural images without using an external classifier. We used a feedforward convolutional SNN and a temporal coding scheme ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014